

minepy - Maximal Information-based Nonparametric Exploration

[image: https://travis-ci.org/minepy/minepy.png?branch=master]
 [https://travis-ci.org/minepy/minepy][image: Documentation Status]
 [http://minepy.readthedocs.io/en/latest/?badge=latest]minepy provides an ANSI C library for the Maximal Information-based
Nonparametric Exploration (MIC and MINE family). Key features:

	APPROX-MIC (the original algorithm, DOI: 10.1126/science.1205438) and
MIC_e (DOI: arXiv:1505.02213 and DOI: arXiv:1505.02214) estimators;

	Total Information Coefficient (TIC, DOI: arXiv:1505.02213) and the
Generalized Mean Information Coefficient (GMIC, DOI: arXiv:1308.5712);

	a C++ interface;

	an efficient Python API (Python 2 and 3 compatibility);

	an efficient MATLAB/OCTAVE API;

minepy is an open-source, GPLv3-licensed software.

The minerva R interface is available at CRAN [https://cran.r-project.org/web/packages/minerva/index.html].

Note

The `mine` command-line application is deprecated since version 1.2.2.
Use MICtools instead (see below).

Note

MICtools, a comprehensive and effective pipeline for TICe and MICe
analysis is now available. TICe is used to perform efficiently a high throughput
screening of all the possible pairwise relationships assessing their
significance, while MICe is used to rank the subset of significant associations
on the bases of their strength. Paper [https://www.biorxiv.org/content/early/2017/11/07/215855],
code and documentation [https://github.com/minepy/mictools]. The minepy library
is preinstalled in the Docker image [https://hub.docker.com/r/minepy/mictools/].

	Homepage and Documentation [http://minepy.readthedocs.io]

	Download [https://github.com/minepy/minepy/releases]

	Github page [https://github.com/minepy/minepy]

	Issues [https://github.com/minepy/minepy/issues]

	Old (version 1.0.0) documentation [http://minepy.sourceforge.net/docs/1.0.0/]

Citing minepy

Davide Albanese, Michele Filosi, Roberto Visintainer, Samantha Riccadonna,
Giuseppe Jurman and Cesare Furlanello. minerva and minepy: a C engine for the
MINE suite and its R, Python and MATLAB wrappers. Bioinformatics (2013)
29(3): 407-408 first published online December 14, 2012
doi:10.1093/bioinformatics/bts707.

Financial Contributions

	Computational Biology Unit - Research and Innnovation Center at Fondazione
Edmund Mach [http://www.fmach.it/eng]

	Predictive Models for Biological and Environmental Data Analysis (MPBA)
Research Unit at Fondazione Bruno Kessler [http://mpba.fbk.eu]

[image: _images/relationships.png]

Quick start

	Download and Install
	C and C++ users

	Python users

	MATLAB users (Windows, Linux and Mac OS X)

	OCTAVE users (Windows, Linux and Mac OS X)

	MINE Application

API

	C API
	Defines

	Structures

	Functions

	Convenience structures and functions

	Example

	Example (convenience functions)

	C++ API
	Example

	A more simple example

	Python API
	Convenience functions

	First Example

	Second Example

	Convenience functions example

	MATLAB and OCTAVE API
	Example

In depth

	APPROX-MIC Implementation Details

Indices and tables

	Index

	Module Index

	Search Page

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

Download and Install

C and C++ users

The GCC is required. Download latest version from
https://github.com/minepy/minepy/releases. No installation is required.
See C API and C++ API on how to
include and compile the library in your C/C++ software.

Python users

Requirements:

	GCC

	Python 2.7, 3.X

	NumPy >= 1.3.0 (with header files)

On Linux

We suggest to install the GCC and the Python headers through the package manager
(e.g. on Ubuntu/Debian):

sudo apt-get update
sudo apt-get install build-essential python-dev

Then, upgrade pip and install setuptools:

pip install --upgrade pip
pip install 'setuptools >=14.0'

Finally, install minepy:

sudo pip install minepy

On Mac OS X

In Mac OS X, we recommend to install Python from Homebrew [http://brew.sh/]:

	Install Xcode [https://developer.apple.com/xcode/];

	Install Homebrew [http://brew.sh/];

	Make sure the environment variable PATH is properly setted in your
~/.bash_profile or ~/.bashrc:

.. code-block:: sh

export PATH=/usr/local/bin:$PATH

	Install Python:

brew update
brew install python

Install gcc:

brew install gcc

Finally, install minepy:

sudo pip install minepy

Running the tests

$ cd tests
$ python minepy_test.py
test_const (__main__.TestFunctions) ... ok
test_exp (__main__.TestFunctions) ... ok
test_linear (__main__.TestFunctions) ... ok
test_sine (__main__.TestFunctions) ... ok

--
Ran 4 tests in 0.412s

OK

MATLAB users (Windows, Linux and Mac OS X)

The library works with MATLAB >= 7.3 (R2006b) since it supports 64-Bit indexing.
See http://www.mathworks.com/help/matlab/matlab_external/upgrading-mex-files-to-use-64-bit-api.html.
Download latest version from https://github.com/minepy/minepy/releases.

	Untar the file minepy-X.Y.Z.tar.gz (where X.Y.Z is the current
version of minepy)

	Open MATLAB

	In the MATLAB “command window” go into the minepy-X.Y.Z folder by
typing:

>> cd path_to_minepy-X.Y.Z/matlab/

	Build the binary MEX file by typing:

>> mex mine_mex.c ../libmine/mine.c

	Now you have the binary MEX-file in path_to_minepy-X.Y.Z/matlab/
(mine_mex.mex*, where * can be a64, maci64, w32 or w64)

	Put your MEX-file (mine_mex.mex*) and mine.m in a folder on the
MATLAB path. Alternatively, you can add path_to_minepy-X.Y.Z/matlab/
selecting File > SetPath.

	Test the MEX-file by typing:

>> minestats = mine([1,2,3,4,5,6], [1,2,3,4,5,6])

OCTAVE users (Windows, Linux and Mac OS X)

Download latest version from https://github.com/minepy/minepy/releases.

	Untar the file minepy-X.Y.Z.tar.gz (where X.Y.Z is the current
version of minepy)

	Run OCTAVE

	Go into the minepy-X.Y.Z folder by typing:

octave:1> cd path_to_minepy-X.Y.Z/matlab/

	Build the binary MEX-file by typing:

octave:2> mex mine_mex.c ../libmine/mine.c

	Now, you have the binary MEX-file in
path_to_minepy-X.Y.Z/matlab/ (mine_mex.mex)

	Put your MEX-file (mine_mex.mex) and mine.m in a folder on the OCTAVE
path. Alternatively, you can add path_to_minepy-X.Y.Z/matlab/ in the
OCTAVE startup file
(http://www.gnu.org/software/octave/doc/interpreter/Startup-Files.html)

	Test the MEX-file by typing:

octave:3> minestats = mine([1,2,3,4,5,6], [1,2,3,4,5,6])

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

MINE Application

The `mine` command-line application is deprecated since version 1.2.2.
Use MICtools [https://github.com/minepy/mictools] instead.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

C API

This chapter describes the mine C library. These functions and structures are
declared in the header file mine.h, located in the libmine/ folder.
You need to add #include "mine.h" in your C source files and link your
program with mine.c.

Defines

	
EST_MIC_APPROX 0

	Original estimator described in DOI: 10.1126/science.1205438.

	
EST_MIC_E 1

	Estimator described in DOI: arXiv:1505.02213 and DOI: arXiv:1505.02214.

	
FALSE 0

	False value.

	
TRUE 1

	True value.

	
char *libmine_version

	The libmine version in the form X.Y.Z (e.g., 1.0.1).

Structures

	
mine_problem

	The mine_problem structure describes the problem. x and y are the two
variables of length n.

typedef struct mine_problem
 {
 int n;
 double *x;
 double *y;
 } mine_problem

	
mine_parameter

	MINE parameters.

	alpha : (0, 1.0] or >=4

	if alpha is in (0,1] then B will be max(n^alpha, 4) where n is the
number of samples. If alpha is >=4 then alpha defines directly the B
parameter. If alpha is higher than the number of samples (n) it will
be limited to be n, so B = min(alpha, n).

	c : (> 0)

	determines how many more clumps there will be than columns in
every partition. Default value is 15, meaning that when trying to
draw x grid lines on the x-axis, the algorithm will start with at
most 15*x clumps.

	est : (EST_MIC_APPROX, EST_MIC_E)

	estimator. With est=EST_MIC_APPROX the original MINE statistics will
be computed, with est=EST_MIC_E the equicharacteristic matrix is
is evaluated and the mine_mic() and mine_tic() functions will return
MIC_e and TIC_e values respectively.

typedef struct mine_parameter
 {
 double alpha;
 double c;
 int est;
 } mine_parameter

	
mine_score

	The mine_score structure contains the maximum normalized mutual information
scores (i.e. the characteristic matrix if est=EST_MIC_APPROX, the
equicharacteristic matrix instead). M[i][j] contains the score using a grid
partitioning x-values into i+2 bins and y-values into j+2 bins. m and M are
of length n and each M[i] is of length m[i].

typedef struct mine_score
 {
 int n; /* number of rows of M */
 int *m; /* number of cols of M[i] for each i */
 double **M; /* the (equi)characteristic matrix */
 } mine_score

Functions

	
mine_score *mine_compute_score(mine_problem

 C++ API

C++ API

This chapter describes the mine C++ wrapper. The class is declared in the header
file cppmine.h, located in the libmine/ folder. You need to add
#include "cppmine.h" in your C++ source files and link your program with
mine.c and cppmine.c.

See the C API documentation.

	
class MINE

	
	
MINE::MINE(double alpha, double c, int est)

	Constructor. Throws an exception when the parameters are
invalid.

	
MINE::~MINE()

	Destructor.

	
void MINE::compute_score(double *x, double *y, int n)

	

	
void MINE::mic()

	

	
void MINE::mas()

	

	
void MINE::mev()

	

	
void MINE::mcn(double eps)

	

	
void MINE::mcn_general()

	

	
void MINE::tic(int norm)

	

Example

The example is located in examples/cpp_example.cpp.

#include <cstdlib>
#include <cmath>
#include <iostream>
#include "cppmine.h"

using namespace std;

int
main (int argc, char **argv)
{
 double PI;
 int i, n;
 double *x, *y;
 MINE *mine;

 PI = 3.14159265;

 /* build the MINE object with exceptions management */
 try
 {
 mine = new MINE(0.6, 15, EST_MIC_APPROX);
 }
 catch (char *s)
 {
 cout << "WARNING: " << s << "\n";
 cout << "MINE will be set with alpha=0.6 and c=15" << "\n";
 mine = new MINE(0.6, 15, EST_MIC_APPROX);
 }

 /* build the problem */
 n = 1001;
 x = new double [n];
 y = new double [n];
 for (i=0; i<n; i++)
 {
 /* build x = [0, 0.001, ..., 1] */
 x[i] = (double) i / (double) (n-1);

 /* build y = sin(10 * pi * x) + x */
 y[i] = sin(10 * PI * x[i]) + x[i];
 }

 /* compute score with exceptions management */
 try
 {
 mine->compute_score(x, y, n);
 }
 catch (char *s)
 {
 cout << "ERROR: " << s << "\n";
 return 1;
 }

 /* print mine statistics */
 try
 {
 cout << "MIC: " << mine->mic() << "\n";
 cout << "MAS: " << mine->mas() << "\n";
 cout << "MEV: " << mine->mev() << "\n";
 cout << "MCN (eps=0): " << mine->mcn(0) << "\n";
 cout << "MCN (eps=1-MIC): " << mine->mcn_general() << "\n";
 cout << "TIC: " << mine->tic(FALSE) << "\n";
 }
 catch (char *s)
 {
 cout << "ERROR: " << s << "\n";
 return 1;
 }

 /* delete the mine object */
 delete mine;

 /* free the problem */
 delete [] x;
 delete [] y;

 return 0;
}

To compile the example, open a terminal, go into the example (examples/)
folder and run:

$ g++ -O3 -Wall -Wno-write-strings cpp_example.cpp ../libmine/cppmine.cpp \
 ../libmine/mine.c -I../libmine/

Run the example by typing:

MIC: 0.999999
MAS: 0.728144
MEV: 0.999999
MCN (eps=0): 4.58496
MCN (eps=1-MIC): 4.58496
TIC: 67.5236

A more simple example

The example is located in examples/cpp_example2.cpp.

#include <cstdlib>
#include <cmath>
#include <iostream>
#include "cppmine.h"

using namespace std;

int
main (int argc, char **argv)
{
 int n = 7;
 double x[] = {1.,2.,3.,4.,5.,6.,7.};
 double y[] = {1.,2.,3.,4.,3.,2.,1.};

 /* build the MINE object */
 MINE mine(0.6, 15, EST_MIC_APPROX);

 /* compute score */
 mine.compute_score(x, y, n);

 /* print MIC */
 cout << "MIC: " << mine.mic() << "\n";

 return 0;
}

To compile the example, open a terminal, go into the example
(examples/) folder and run:

$ g++ -O3 -Wall -Wno-write-strings cpp_example2.cpp ../libmine/cppmine.cpp \
 ../libmine/mine.c -I../libmine/

Run the example by typing:

$./a.out
MIC: 0.291692

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 Python API

Python API

	
class minepy.MINE(alpha=0.6, c=15, est="mic_approx")

	Maximal Information-based Nonparametric Exploration.

	Parameters:	
	alpha (float (0, 1.0] or >=4) – if alpha is in (0,1] then B will be max(n^alpha, 4) where n is the
number of samples. If alpha is >=4 then alpha defines directly the B
parameter. If alpha is higher than the number of samples (n) it will
be limited to be n, so B = min(alpha, n).

	c (float (> 0)) – determines how many more clumps there will be than columns in
every partition. Default value is 15, meaning that when trying to
draw x grid lines on the x-axis, the algorithm will start with at
most 15*x clumps.

	est (str ("mic_approx", "mic_e")) – estimator. With est=”mic_approx” the original MINE statistics will
be computed, with est=”mic_e” the equicharacteristic matrix is
is evaluated and the mic() and tic() methods will return MIC_e and
TIC_e values respectively.

	
compute_score(x, y)

	Computes the (equi)characteristic matrix (i.e. maximum normalized
mutual information scores.

	
mic()

	Returns the Maximal Information Coefficient (MIC or MIC_e).

	
mas()

	Returns the Maximum Asymmetry Score (MAS).

	
mev()

	Returns the Maximum Edge Value (MEV).

	
mcn(eps=0)

	Returns the Minimum Cell Number (MCN) with eps >= 0.

	
mcn_general()

	Returns the Minimum Cell Number (MCN) with eps = 1 - MIC.

	
gmic(p=-1)

	Returns the Generalized Maximal Information Coefficient (GMIC).

	
tic(norm=False)

	Returns the Total Information Coefficient (TIC or TIC_e). If
norm==True TIC will be normalized in [0, 1].

	
get_score()

	Returns the maximum normalized mutual information scores (i.e. the
characteristic matrix M if est=”mic_approx”, the equicharacteristic
matrix instead). M is a list of 1d numpy arrays where M[i][j] contains
the score using a grid partitioning x-values into i+2 bins and y-values
into j+2 bins.

	
computed()

	Return True if the (equi)characteristic matrix) is computed.

Convenience functions

	
minepy.pstats(X, alpha=0.6, c=15, est="mic_approx")

	Compute pairwise statistics (MIC and normalized TIC) between variables
(convenience function).

For each statistic, the upper triangle of the matrix is stored by row
(condensed matrix). If m is the number of variables, then for i < j < m, the
statistic between (row) i and j is stored in k = m*i - i*(i+1)/2 - i - 1 + j.
The length of the vectors is n = m*(m-1)/2.

	Parameters:	
	X (2D array_like object) – An n-by-m array of n variables and m samples.

	alpha (float (0, 1.0] or >=4) – if alpha is in (0,1] then B will be max(n^alpha, 4) where n is the
number of samples. If alpha is >=4 then alpha defines directly the B
parameter. If alpha is higher than the number of samples (n) it will be
limited to be n, so B = min(alpha, n).

	c (float (> 0)) – determines how many more clumps there will be than columns in
every partition. Default value is 15, meaning that when trying to
draw x grid lines on the x-axis, the algorithm will start with at
most 15*x clumps.

	est (str ("mic_approx", "mic_e")) – estimator. With est=”mic_approx” the original MINE statistics will
be computed, with est=”mic_e” the equicharacteristic matrix is
is evaluated and MIC_e and TIC_e are returned.

	Returns:	
	mic (1D ndarray) – the condensed MIC statistic matrix of length n*(n-1)/2.

	tic (1D ndarray) – the condensed normalized TIC statistic matrix of length n*(n-1)/2.

	
minepy.cstats(X, Y, alpha=0.6, c=15, est="mic_approx")

	Compute statistics (MIC and normalized TIC) between each pair of the two
collections of variables (convenience function).

If n and m are the number of variables in X and Y respectively, then the
statistic between the (row) i (for X) and j (for Y) is stored in mic[i, j]
and tic[i, j].

	Parameters:	
	X (2D array_like object) – An n by m array of n variables and m samples.

	Y (2D array_like object) – An p by m array of p variables and m samples.

	alpha (float (0, 1.0] or >=4) – if alpha is in (0,1] then B will be max(n^alpha, 4) where n is the
number of samples. If alpha is >=4 then alpha defines directly the B
parameter. If alpha is higher than the number of samples (n) it will be
limited to be n, so B = min(alpha, n).

	c (float (> 0)) – determines how many more clumps there will be than columns in
every partition. Default value is 15, meaning that when trying to
draw x grid lines on the x-axis, the algorithm will start with at
most 15*x clumps.

	est (str ("mic_approx", "mic_e")) – estimator. With est=”mic_approx” the original MINE statistics will
be computed, with est=”mic_e” the equicharacteristic matrix is
is evaluated and MIC_e and TIC_e are returned.

	Returns:	
	mic (2D ndarray) – the MIC statistic matrix (n x p).

	tic (2D ndarray) – the normalized TIC statistic matrix (n x p).

First Example

The example is located in examples/python_example.py.

import numpy as np
from minepy import MINE

def print_stats(mine):
 print "MIC", mine.mic()
 print "MAS", mine.mas()
 print "MEV", mine.mev()
 print "MCN (eps=0)", mine.mcn(0)
 print "MCN (eps=1-MIC)", mine.mcn_general()
 print "GMIC", mine.gmic()
 print "TIC", mine.tic()

x = np.linspace(0, 1, 1000)
y = np.sin(10 * np.pi * x) + x
mine = MINE(alpha=0.6, c=15, est="mic_approx")
mine.compute_score(x, y)

print "Without noise:"
print_stats(mine)
print

np.random.seed(0)
y +=np.random.uniform(-1, 1, x.shape[0]) # add some noise
mine.compute_score(x, y)

print "With noise:"
print_stats(mine)

Run the example:

$ python python_example.py
Without noise:
MIC 1.0
MAS 0.726071574374
MEV 1.0
MCN (eps=0) 4.58496250072
MCN (eps=1-MIC) 4.58496250072
GMIC 0.779360251901
TIC 67.6612295532

With noise:
MIC 0.505716693417
MAS 0.365399904262
MEV 0.505716693417
MCN (eps=0) 5.95419631039
MCN (eps=1-MIC) 3.80735492206
GMIC 0.359475501353
TIC 28.7498326953

Second Example

The example is located in examples/relationships.py.

Warning

Requires the matplotlib [http://matplotlib.org] library.

from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from minepy import MINE

rs = np.random.RandomState(seed=0)

def mysubplot(x, y, numRows, numCols, plotNum,
 xlim=(-4, 4), ylim=(-4, 4)):

 r = np.around(np.corrcoef(x, y)[0, 1], 1)
 mine = MINE(alpha=0.6, c=15, est="mic_approx")
 mine.compute_score(x, y)
 mic = np.around(mine.mic(), 1)
 ax = plt.subplot(numRows, numCols, plotNum,
 xlim=xlim, ylim=ylim)
 ax.set_title('Pearson r=%.1f\nMIC=%.1f' % (r, mic),fontsize=10)
 ax.set_frame_on(False)
 ax.axes.get_xaxis().set_visible(False)
 ax.axes.get_yaxis().set_visible(False)
 ax.plot(x, y, ',')
 ax.set_xticks([])
 ax.set_yticks([])
 return ax

def rotation(xy, t):
 return np.dot(xy, [[np.cos(t), -np.sin(t)], [np.sin(t), np.cos(t)]])

def mvnormal(n=1000):
 cors = [1.0, 0.8, 0.4, 0.0, -0.4, -0.8, -1.0]
 for i, cor in enumerate(cors):
 cov = [[1, cor],[cor, 1]]
 xy = rs.multivariate_normal([0, 0], cov, n)
 mysubplot(xy[:, 0], xy[:, 1], 3, 7, i+1)

def rotnormal(n=1000):
 ts = [0, np.pi/12, np.pi/6, np.pi/4, np.pi/2-np.pi/6,
 np.pi/2-np.pi/12, np.pi/2]
 cov = [[1, 1],[1, 1]]
 xy = rs.multivariate_normal([0, 0], cov, n)
 for i, t in enumerate(ts):
 xy_r = rotation(xy, t)
 mysubplot(xy_r[:, 0], xy_r[:, 1], 3, 7, i+8)

def others(n=1000):
 x = rs.uniform(-1, 1, n)
 y = 4*(x**2-0.5)**2 + rs.uniform(-1, 1, n)/3
 mysubplot(x, y, 3, 7, 15, (-1, 1), (-1/3, 1+1/3))

 y = rs.uniform(-1, 1, n)
 xy = np.concatenate((x.reshape(-1, 1), y.reshape(-1, 1)), axis=1)
 xy = rotation(xy, -np.pi/8)
 lim = np.sqrt(2+np.sqrt(2)) / np.sqrt(2)
 mysubplot(xy[:, 0], xy[:, 1], 3, 7, 16, (-lim, lim), (-lim, lim))

 xy = rotation(xy, -np.pi/8)
 lim = np.sqrt(2)
 mysubplot(xy[:, 0], xy[:, 1], 3, 7, 17, (-lim, lim), (-lim, lim))

 y = 2*x**2 + rs.uniform(-1, 1, n)
 mysubplot(x, y, 3, 7, 18, (-1, 1), (-1, 3))

 y = (x**2 + rs.uniform(0, 0.5, n)) * \
 np.array([-1, 1])[rs.random_integers(0, 1, size=n)]
 mysubplot(x, y, 3, 7, 19, (-1.5, 1.5), (-1.5, 1.5))

 y = np.cos(x * np.pi) + rs.uniform(0, 1/8, n)
 x = np.sin(x * np.pi) + rs.uniform(0, 1/8, n)
 mysubplot(x, y, 3, 7, 20, (-1.5, 1.5), (-1.5, 1.5))

 xy1 = np.random.multivariate_normal([3, 3], [[1, 0], [0, 1]], int(n/4))
 xy2 = np.random.multivariate_normal([-3, 3], [[1, 0], [0, 1]], int(n/4))
 xy3 = np.random.multivariate_normal([-3, -3], [[1, 0], [0, 1]], int(n/4))
 xy4 = np.random.multivariate_normal([3, -3], [[1, 0], [0, 1]], int(n/4))
 xy = np.concatenate((xy1, xy2, xy3, xy4), axis=0)
 mysubplot(xy[:, 0], xy[:, 1], 3, 7, 21, (-7, 7), (-7, 7))

plt.figure(facecolor='white')
mvnormal(n=800)
rotnormal(n=200)
others(n=800)
plt.tight_layout()
plt.show()

[image: _images/relationships.png]

Convenience functions example

The example is located in examples/python_conv_example.py.

import numpy as np
from minepy import pstats, cstats
import time

np.random.seed(0)

build the X matrix, 8 variables, 320 samples
X = np.random.rand(8, 320)

build the Y matrix, 4 variables, 320 samples
Y = np.random.rand(4, 320)

compute pairwise statistics MIC_e and normalized TIC_e between samples in X,
B=9, c=5
mic_p, tic_p = pstats(X, alpha=9, c=5, est="mic_e")

compute statistics between each pair of samples in X and Y
mic_c, tic_c = cstats(X, Y, alpha=9, c=5, est="mic_e")

print "normalized TIC_e (X):"
print tic_p
print "MIC_e (X vs. Y):"
print mic_c

$ python python_conv_example.py
normalized TIC_e (X):
[0.01517556 0.00859132 0.00562575 0.01082706 0.01367201 0.0196697
 0.00947777 0.01273158 0.011291 0.01455822 0.0072817 0.01187837
 0.01595135 0.00902464 0.00974791 0.00952264 0.01806944 0.01064587
 0.00808622 0.01075486 0.00943122 0.01116569 0.01380142 0.01590193
 0.02159243 0.01450488 0.01347701 0.01036625]
MIC_e (X vs. Y):
[[0.0175473 0.01102385 0.01489008 0.02957048]
 [0.01294067 0.02682975 0.02743612 0.02224291]
 [0.01613576 0.0175808 0.01633154 0.02633199]
 [0.02090252 0.01680651 0.01735732 0.02186021]
 [0.01350926 0.01002233 0.02128154 0.02036634]
 [0.01459962 0.020248 0.0319421 0.01782455]
 [0.01186273 0.0291112 0.01577821 0.01970322]
 [0.012531 0.02071883 0.01536824 0.03312674]]

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 MATLAB and OCTAVE API

MATLAB and OCTAVE API

function [minestats, M] = mine(x, y, alpha, c, est)
% MINE Maximal Information-based Nonparametric Exploration
%
% Returns a struct containing MIC, MAS, MEV, MCN (eps=0) MCN_GENERAL
% (eps=1-MIC) and TIC.
%
% MINESTATS = MINE(X, Y, ALPHA, C, EST) computes the MINE statistics
% between X and Y. X and Y must be row vectors of size n.
% Alpha is the exponent in B(n) = n^alpha and must be in (0, 1.0].
% Parameter c determines how many more clumps there will be than
% columns in every partition and must be > 0.
% Est is a string defining the estimation method.
%
% MINESTATS = MINE(X, Y, ALPHA, C) computes the MINE statistics
% between X and Y. Default value of EST is 'mic_approx'.
%
% MINESTATS = MINE(X, Y, ALPHA) computes the MINE statistics
% between X and Y. Default value of c is 15.
%
% MINESTATS = MINE(X, Y) computes the MINE statistics
% between X and Y. Default value of alpha is 0.6 and default value
% of c is 15.

Example

The example is located in examples/matlab_example.m.

% create x = [0, 0.001, 0.002, ..., 0.998, 0.999, 1]
x = linspace(0, 1, 1001);
% y = sin(10 * pi * x) + x
y = sin(10 * pi * x) + x;
% compute the mine statistics
minestats = mine(x, y);

% print the minestats structure
minestats

minestats =

 mic: 1
 mas: 0.7261
 mev: 1
 mcn: 4.5850
mcn_general: 4.5850
 tic: 67.661

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 APPROX-MIC Implementation Details

APPROX-MIC Implementation Details

The core implementation of libmine is built from scratch in ANSI C starting from
the pseudocode provided in DOI: 10.1126/science.1205438, Supplementary On-line
Material (SOM), as no original Java source code is available. The level of
detail of the pseudocode leaves a few ambiguities and in this section we list
and comment the most crucial choices we adopted for the algorithm steps whenever
no explicit description was provided. Obviously, our choices are not necessarily
the same as in the original Java version (MINE.jar,
http://www.exploredata.net/). The occurring differences can be ground for small
numerical discrepancies as well as for difference in performance
(DOI: 10.1093/bioinformatics/bts707).

	In SOM, Algorithm 5, the characteristic matrix [image: M] is computed in the
loop starting at line 7 for [image: xy\leq B]. This is in contrast with the
definition of the MINE measures (see SOM, Sec. 2) where the corresponding
bound is [image: xy<B] for all the four statistics. We adopted the same bound
as in the pseudocode, i.e. [image: xy\leq B].

	The MINE statistic MCN is defined as follows in SOM, Sec. 2:

[image: \textrm{MCN}(D,\epsilon) = \min_{xy<B} \{\log(xy)\colon M(D)_{x,y} \geq (1-\epsilon)\textrm{MIC}(D)\}]

As for MINE.jar (inferred from Table S1), we set [image: \epsilon=0] and
[image: \log] to be in base 2. Finally, as specified in Point 1 above, we use
the bound [image: xy\leq B] as in the SOM pseudocode rather than the
[image: xy<B] as in the definition. This led to implement the formula:

[image: \textrm{MCN}(D,0) = \min_{xy\leq B} \{\log_2(xy)\colon M(D)_{x,y} = \textrm{MIC}(D)\},]

being [image: \textrm{MIC}(D)] the maximum value of the matrix [image: M(D)].

	In EquipartitionYAxis() (SOM, Algorithm 3, lines 4 and 10), two ratios are
assigned to the variable desiredRowSize, namely [image: \frac{n}{y}] and
[image: \frac{(n-i+1)}{(y-\textrm{currRow}+1)}]. We choose to consider the
ratios as real numbers; a possible alternative is to cast desiredRowSize to
an integer. The two alternatives can give rise to different [image: Q] maps,
and thus to slightly different numerical values of the MINE statistics.

	In some cases, the function EquipartitionYAxis() can return a map [image: Q]
whose number of clumps [image: \hat{y}] is smaller than [image: y], e.g. when
in [image: D] there are enough points whose second coordinates coincide. This
can lead to underestimate the normalized mutual information matrix
[image: M_{x,y}] (SOM, Algorithm 5, line 9), where [image: M_{x,y}] is obtained
by dividing the mutual information [image: I_{x,y}] for
[image: \min\{\log x,\log y\}]. To prevent this issue, we normalize instead
by the factor [image: \min\{\log x,\log \hat{y}\}].

	The function GetClumpsPartition([image: D,Q]) is discussed (SOM page 12), but
its pseudocode is not explicitely available. Our implementation is defined
here in GetClumpsPartition() algorithm. The function returns the map [image: P]
defining the clumps for the set [image: D], with the constraint of keeping in
the same clump points with the same [image: x]-value.

[image: _images/alg1.png]
GetClumpsPartition() algorithm

	We also explicitly provide the pseudocode for the GetSuperclumpsPartition()
function (SOM page 13) in GetSuperclumpsPartition() algorithm. This function limits
the number of clumps when their number k is larger than a given bound
[image: \hat{k}]. The function calls the GetClumpsPartition() and, for
math:k>hat{k} it builds an auxiliary set [image: D_{\tilde{P}}] as an input
for the EquipartitionYAxis function discussed above (Points 3-4).

[image: _images/alg2.png]
GetSuperclumpsPartition() algorithm

	We observed that the GetSuperclumpsPartition() implemented in MINE.jar may fail
to respect the [image: \hat{k}] constraints on the maximum number of clumps and a
map [image: P] with [image: \hat{k}+1] superclumps is actually returned. As an
example, the MINE.jar applied in debug mode (d=4 option) with the same
parameters ([image: \alpha=0.551], [image: c=10]) used in the original work to the
pair of variables (OTU4435,OTU4496) of the Microbioma dataset, returns
[image: cx+1] clumps, instead of stopping at the bound [image: \hat{k}=cx] for
[image: x=12,7,6,5,4\ldots].

	The possibly different implementations of the GetSuperclumpsPartition() function
described in Points 6-7 can lead to minor numerical differences in the MIC
statistics. To confirm this effect, we verified that by reducing the number of
calls to the GetSuperclumpsPartition() algorithm, we can also decrease the
difference between MIC computed by minepy and by MINE.jar, and they
asymptotically converge to the same value.

	In our implementation, we use double-precision floating-point numbers
(double in C) in the computation of entropy and mutual information values.
The internal implementation of the same quantities in MINE.jar is unknown.

	In order to speed up the computation of the MINE statistics, we introduced two
improvements (with respect to the pseudo-code), in OptimizeXAxis(), defined in
Algorithm 2 in SOM):

	Given a [image: (P,Q)] grid, we precalculate the matrix of
number of samples in each cell of the grid, to speed up the
computation of entropy values [image: H(Q)], [image: H(\langle c_0,c_s,c_t\rangle)], [image: H(\langle c_0,c_s,c_t \rangle, Q)] and [image: H(\langle c_s,c_t \rangle, Q)].

	We precalculate the entropy matrix [image: H(\langle c_s,c_t \rangle, Q), \forall s, t] to speed up the computation of
[image: F(s,t,l)] (see Algorithm 2, lines 10–17 in SOM).

These improvements do not affect the final results of mutual information
matrix and of MINE statistics.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	
 	
 minepy	

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 Index

Index

 Symbols
 | C
 | G
 | L
 | M
 | P
 | T

Symbols

 	
 	0 (C variable), [1]

 	
 	1 (C variable), [1]

C

 	
 	compute_score() (minepy.MINE method)

 	
 	computed() (minepy.MINE method)

 	cstats() (in module minepy)

G

 	
 	get_score() (minepy.MINE method)

 	
 	gmic() (minepy.MINE method)

L

 	
 	libmine_version (C variable)

M

 	
 	mas() (minepy.MINE method)

 	mcn() (minepy.MINE method)

 	mcn_general() (minepy.MINE method)

 	mev() (minepy.MINE method)

 	mic() (minepy.MINE method)

 	MINE (C++ class)

 	(class in minepy)

 	MINE::MINE::compute_score (C++ function)

 	MINE::MINE::mas (C++ function)

 	MINE::MINE::mcn (C++ function)

 	MINE::MINE::mcn_general (C++ function)

 	MINE::MINE::mev (C++ function)

 	MINE::MINE::mic (C++ function)

 	MINE::MINE::MINE (C++ function)

 	MINE::MINE::tic (C++ function)

 	MINE::MINE::~MINE (C++ function)

 	mine_check_parameter (C function)

 	
 	mine_compute_cstats (C function)

 	mine_compute_pstats (C function)

 	mine_compute_score (C function)

 	mine_cstats (C type)

 	mine_free_score (C function)

 	mine_gmic (C function)

 	mine_mas (C function)

 	mine_matrix (C type)

 	mine_mcn (C function)

 	mine_mcn_general (C function)

 	mine_mev (C function)

 	mine_mic (C function)

 	mine_parameter (C type)

 	mine_problem (C type)

 	mine_pstats (C type)

 	mine_score (C type)

 	mine_tic (C function)

 	minepy (module)

P

 	
 	pstats() (in module minepy)

T

 	
 	tic() (minepy.MINE method)

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

_static/comment-bright.png

_static/comment-close.png

_images/alg1.png
Algorithm 1 GetClumpsPartition(D), Q)
Require: D = {(a:, bi),i
component a;
Require: Q is the map of row assignments retumned by EquipartitionYAxis
Ensure: Returns amap P : D — {1,...,k} providing the column assignment of the point (a, b)
EQ+Q
i1
3ee —1
4: repeat
5 540
6 flag « false
o
8:
9:

1,....n} is a set of n ordered pairs sorted in increasing order by their first

for i+ 1tondo
a; = a, then

: $4=8 +1 n
10: Q((a1,b:)) # Q((a;, ;) then
1 flag + true
12:ifs # 0 and flag then
13: for 0to s do

a: Q@i bis)) & ¢
15: ceec—1

16: iits+1

17: untili > n

18: i+ 1

19: P((ar,br) « i

20: for ‘2I0 n do _

21 Qb)) # Ql(aj1.b; 1)) then
ieit1

23: P((a;.bj)) i

24: return P

_images/math/331157c6afbd113256867fd408d80277d1a24756.png

_static/file.png

_images/alg2.png
Algorithm 2 GetSuperclumpsPartition(D, Q. k)
Require: D = {(a;.b:).i = L,....n} is a set of 1 ordered pairs sorted in increasing order by their first
component a;
Require: (Q is the map of row assignments retumed by EquipartitionYAxis
Require: k is the maximum number of clumps.
Ensure: Returns amap P : D — {1,...., k} providing the column assignment of the point (a. b)
L P GetClumpsPartition(D. Q)
2: k + number of clumps of P
ik > k then
Dp {(0. P((ai, b)) : (ar.bs) € D}
P ﬁ Equipartition YAXis(Djs, k)
((a:.b:)) + P((0. P((ai.b:)))) for every (ai, bi)
relurn P
else
return P

&R

_static/minus.png

_images/relationships.png
Pearson r=1.0 Pearson r=0.8 Pearson r=0.0 Pearson r=-0.4 Pearson r=-1.
MC=1.0 MC=05 MIC=0.1 Mc=0.2 MC=1.0
N
Pearsonr=1.0 Pearson r=1.0 Péarson r=1.0 Pearson r=-1.0 Pearson r=

MIC=1.0 MIC=1.0 MIC=1.0 MIC=1.0

e

MIC=1.0

Pearson Pearson

MC=0.1

_static/comment.png

_images/math/57136164d364ff5f7ad96fee950de63fbc0f72f4.png
Ty < D

_images/math/da6dbb83b39df9e393ec7a419eea683a62d2ad37.png
Ty < D

_images/math/b18e6cdfdaf1457ae40fe146ab44c62cc501015d.png

_static/plus.png

_images/math/c0f62eabe7fe232e1b953c795b7d5b6485a4e6f4.png

_static/ajax-loader.gif

_images/math/d304373d18128878f5ceb00b7706472dfe6db843.png
min{log x, log y }

_images/math/f5cbb0d10f020fb5f3b4ba8e172cb2d1091869dd.png

_static/up-pressed.png

_images/math/3b92c54b45a16e1b7173ca5fa8fee25c0f2dd5dd.png
H({cs,c4),Q), Vs, t

nav.xhtml

 Table of Contents

 		minepy - Maximal Information-based Nonparametric Exploration

 		Download and Install

 		C and C++ users

 		Python users

 		On Linux

 		On Mac OS X

 		Running the tests

 		MATLAB users (Windows, Linux and Mac OS X)

 		OCTAVE users (Windows, Linux and Mac OS X)

 		MINE Application

 		C API

 		Defines

 		Structures

 		Functions

 		Convenience structures and functions

 		Example

 		Example (convenience functions)

 		C++ API

 		Example

 		A more simple example

 		Python API

 		Convenience functions

 		First Example

 		Second Example

 		Convenience functions example

 		MATLAB and OCTAVE API

 		Example

 		APPROX-MIC Implementation Details

_static/down.png

_static/up.png

_images/math/109d904165b56e97b315d0738a53470bbfad1a45.png
Fl(s, t,1)

_images/math/450a8e2c2320d77181e0d4fc68c947e9a5de8ecb.png

_images/math/01e18d657790955685e918295d47d025c3730567.png
M,

[+

_images/math/42cef4e101ff553a4bef9ebbb8f58895116daffd.png
min{log x, log i}

_images/math/2885eeb6eeb922c0ccc7d8331de626e40cbfddd4.png
MCN(D, €) = min{log(zy): M(D)zy 2 (1 —€)MIC(D)}

_images/math/a59f68a4202623bb859a7093f0316bf466e6f75d.png

_images/math/392f70d7c66e18c7b8b02b375d31819499374